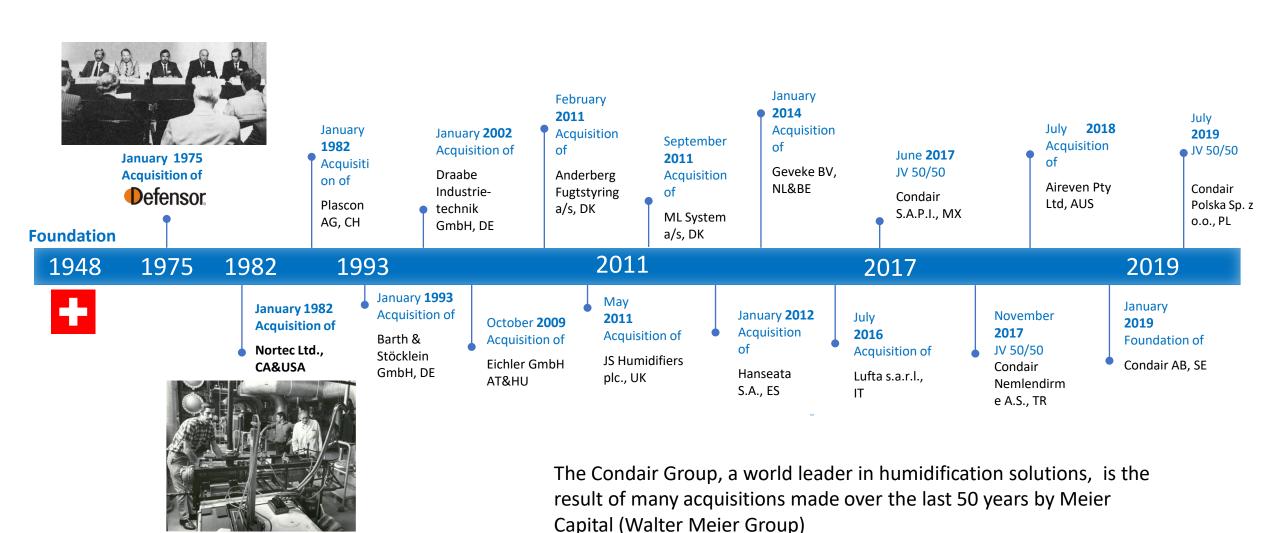
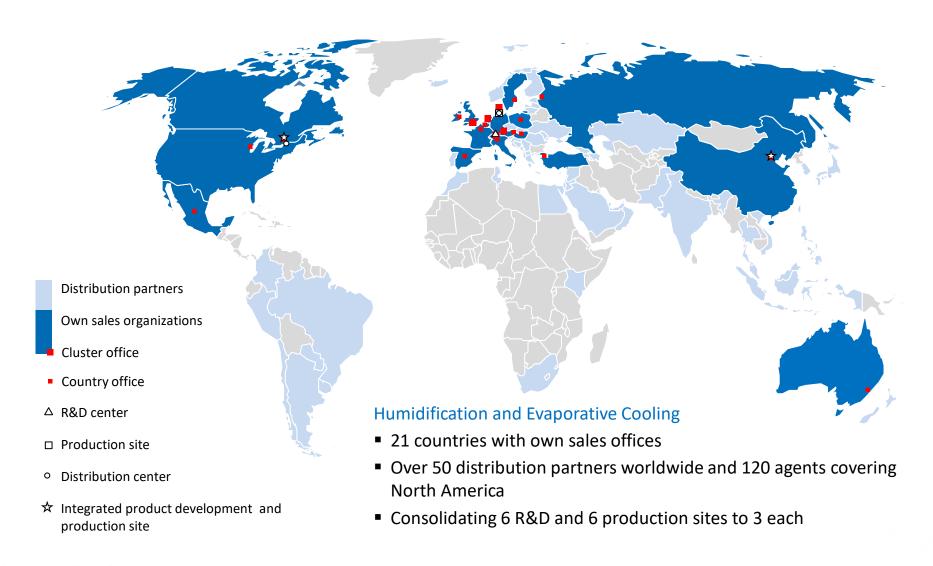


Humidification for Paper and Corrugated industries


Nuno Silva, PhD - (Business Development) Alvie Stephenson - (Sales manager) William Truong - (Business Development)

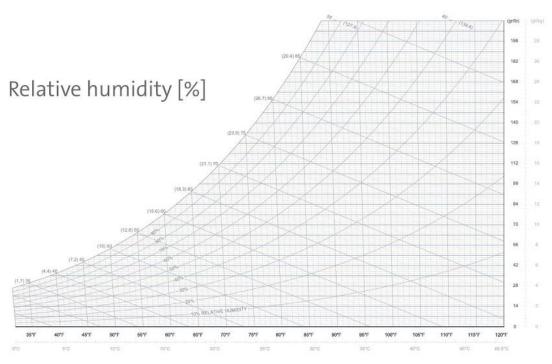

70 years of history

The Condair Group Organization Sites and Markets

What is Humidity and how do we measure it?

Humidity

- The amount of water vapor in the air
- Measured in "Absolute" or "Relative" terms


Absolute Humidity

- Mass of water in particular volume of air
- Expressed as mass (grains/lb or g/kg)

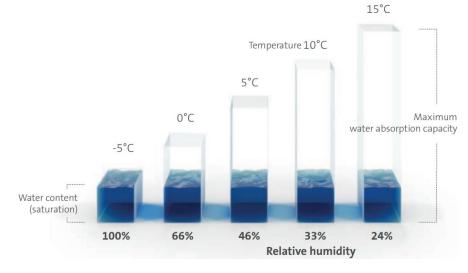
Relative Humidity

 Amount of water vapor in the air relative to how much it can hold at a given temperature (%)

Absolute humidity [gr/lb]

Temperature

What Causes Dryness?



20 °C = 68 °F 0 °C = 32 °F

Relative air humidity (%)

The higher the temperature, the more moisture air can absorb.

The relative humidity decreases in this process.

		Indoor RH%										
	after heating ventilation air to 70°F											
	100	2	4	5	6	7	9	12	17	19	23	29
> 0	60	1	2	3	3	4	5	7	9	11	14	17
RH%	50	1	1	3	3	4	4	6	8	9	12	14
oor	45	1	1	2	3	3	4	6	7	8	11	13
Outdoor	40	1	1	2	3	3	4	5	7	7	10	12
0	30	0	1	2	1	2	3	4	5	5	7	9
	20	0	1	1	1	2	2	3	3	3	5	5
		-20	-10	-5	0	5	10	15	20	25	30	35
	Outdoor Temperature (°F)											

Printing – Humidity?

Requirements

Optimum humidity 50 – 60% RH

Applications

- Printing halls
- Paper stock
- CTP (Computer-to-plate)
- Further processing

Benefits

- No paper distortion
- No static
- Machine efficiency
 - No web breaks
 - No paper sticking
 - No registered off sets
- Constant level of quality
- Reduced waste
- Longer life-cycle cylinder/plates

- No lime deposits
- Constant ink transfer
- Fast drying
- Optimized color-water-balance
- Increased printing plates lifetime

Ambient Air Humidity Effect On Paper

Ambient air humidity too high Absorbs moisture = Wavy edges

Paper is Hygroscopic

Ambient air humidity too low Releases moisture = Tight edges

With the right relative humidity:

- Dimensional accuracy of the paper is assured
- Eliminates jamming due to electrostatic

Packaging

Requirements

45 – 55% relative humidity

Benefits

- Machine efficiency
- Constant level of quality
- Less waste
- Less downtime

- Reduce score cracking
- Dimensional stability
- Adhesive properties

Methods of air humidification

Isothermal


Adiabatic

Gas Steam


Electric Steam

Resistive Steam

Live Steam

Steam

Evaporation

Evap Media

Nozzles

High Pressure

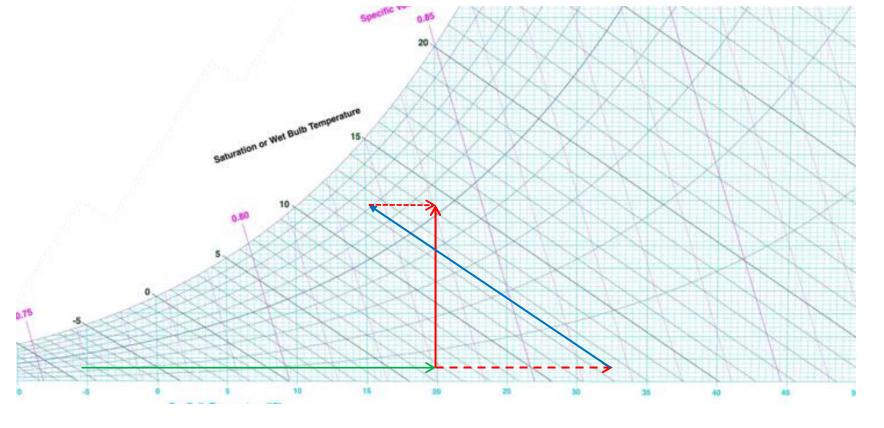
Ultrasonic

Steam: Energy comes from electricity, gas, or heat exchange process

Adiabatic (Spray / Evaporative): Energy comes from the air

Heat of Evaporation: 970 – 1075 BTU/lb

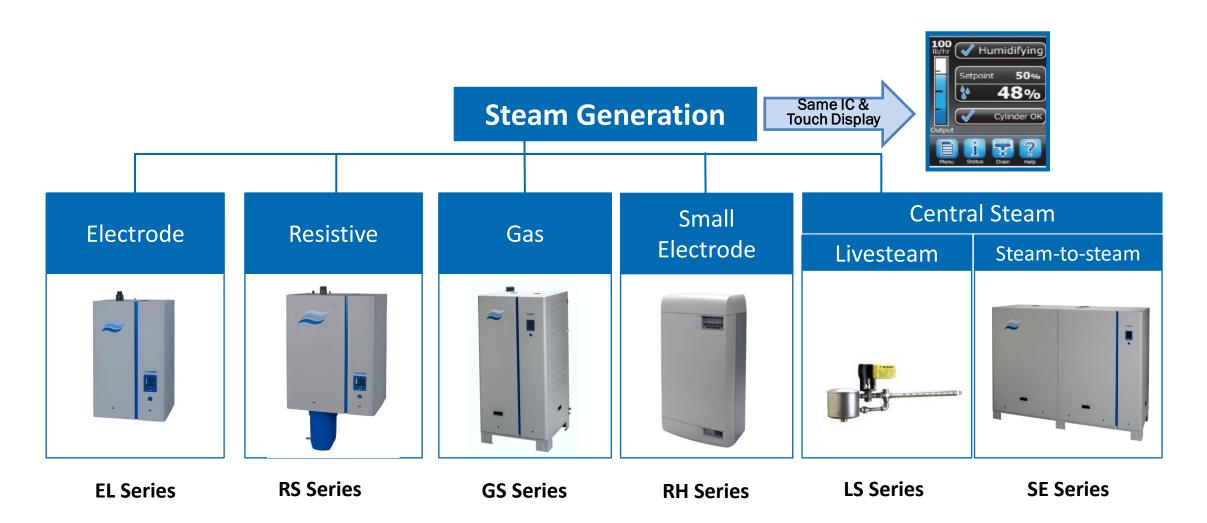
2257 - 2500 kJ/kg



Isothermal Vs. Adiabatic

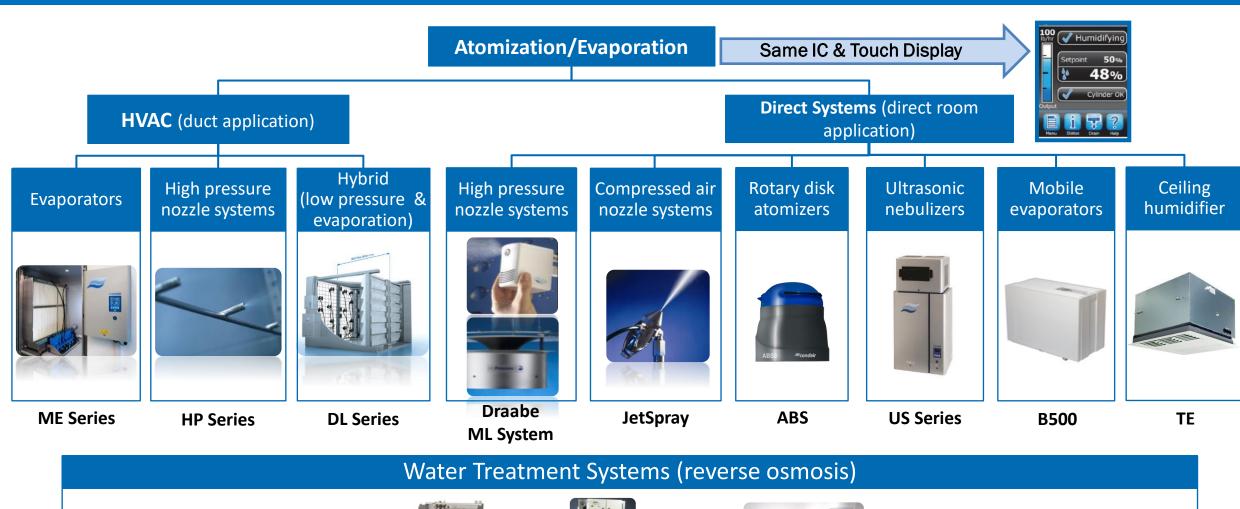
- Vapor pressure differential governs evaporation rate
- Evaporation slows as it approaches saturation
- Constant Enthalpy process

- Arid = Rapid Evaporation
- Damp = Slow Evaporation


Benefits of Adiabatic Systems

- Energy efficient
- Free cooling
- Typical larger capacities for single units (up to 2800 lbs/hr)
- Minimal maintenance

Humidification - Steam Generation



Adiabatic Portfolio – Modular Solutions

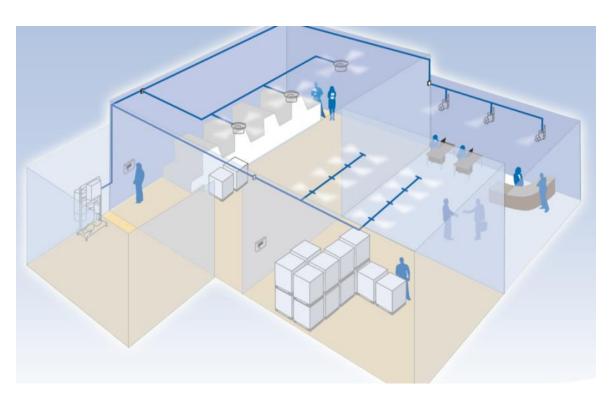
ML System

Draabe box (rental)

ML Series - Benefits of Direct Room Humidifiers

ML Series Princess Humidifier

ML Series Solo Humidifier


- Instant output of humidity directly where it is needed when there is a demand
- Systems can be tailored for each individual site
- Fan assisted mist dispersion decreases absorption times and needed clearances
- Wall or ceiling mounting options including low ceilings
- Low energy consumption

Why adiabatic In-Space for Paper and corrugated

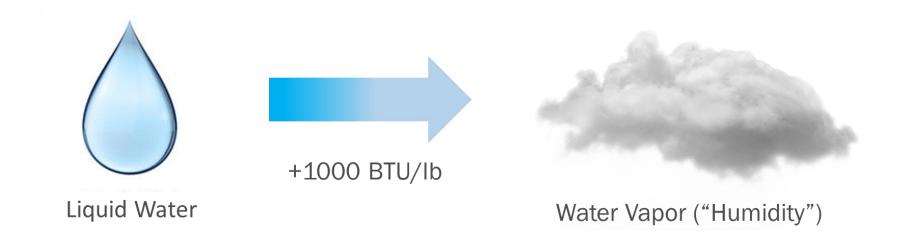
- Multiple Head and Nozzles serving multiple zones
- Low Ceiling Applications
- Clean Room Applications
- ESD or Dust Suppression
- Adiabatic cooling where needed
- No or limited duct work Great for RETROFITS
- Capacities of tens of lbs/hr. to several
 thousands of lbs/hr.
- Improved ESG

EL & RS Series Benefits of Electric Humidifiers

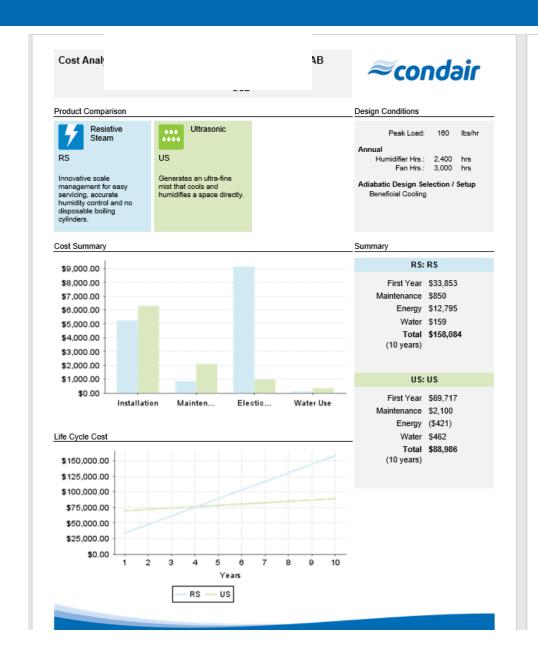
EL Series Electrode Steam Humidifier

RS Series Resistive Steam Humidifier

- Pure, clean, sterile steam humidification
- Quick and easy maintenance
- Humidifier fits into tight spots with zero-side clearance
- Water consumption is minimized
- Standard drain water cooling to 140°F (60°C) - no external equipment required for DWC
- Outdoor model can be installed in locations down to -40°F (-40°C)


Energy §

- ~1000 BTU/Ib to change phase from liquid to gas
- Steam humidifiers use electricity or gas
- Adiabatic humidifiers draw energy from air


Better ESG with adiabatic DRS

- Low energy consumption Cooling effect High energy saving rebates
- 100% evaporation efficiency 100% hygienic and BQ testing on-site
- Guaranteed service and parts for 10 years after model phase-out
- Downsize mechanical cooling loads
- Boost energy footprint with 1-stop solution upgrades: from load sizing through system design, installation and maintenance
- Reduce your building energy intensity and greenhouse emissions
- Condair new hourly simulation tool

Better ESG with adiabatic DRS

Equipment Setup			
General Setup Humidifier Peak Load Average Usage Corrected Humidifier Load RO System Efficiency Yearly Operation	160 70 112 70 2,400	lbs/hr % lbs/hr % hrs	Adiabatic Setup Air Volume 6,000 CFM Fan Efficiency 70 % Yearly Fan Operation 3,000 hrs Adiabatic Mode Include Cooling Savings
Utility Rate Information Electricity Demand Charge Electricity Service Charge Natural Gas Central Steam District Heating Water Reverse Osmosis Water Sewer	0.10 8.00 10.00 10.31 0.05 2.50 8.00 4.00	USD/kWh USD/kWh per month USD/kWh USD/1000 kq USD/kWh USD/m³ USD/m³ USD/m³	Coefficient of Performance COP (if applicable) Equivalent Cooling System 6 Preheat System 2 District

Data Outputs Utility Usage

	Water Type	Water Usage	RO Waste	Sewer Billed	Sewer Actual	Demand	(saved)	(spent)
RS	Potable	44,289 gal \$111		44,289 gal \$177	11,958 gal \$48	91,392 kWh \$9,139/year		
US	RO	43,108 gal \$345	18,475 gal \$46	61,583 gal \$246	29,252 gal \$117	9,677 kWh \$968/year	13,920 kWh/year	41,455 kWh/year

Adiabatic Data

	RS	US
Pressure Loss (Off-Season)		
Pressure Loss (Humidifying)		
Additional Fan Energy		
Additional Fan Energy Cost		

Total Costs

		K5	US
Totals	First Year	\$33,853	\$69,717
Totals	Subsequent	\$13,803	\$2,141

Cummulative Life Cost

	RS	US
Initial	\$20,050	\$67,576
2020	\$33,853	\$69,717
2021	\$47,657	\$71,858
2022	\$61,460	\$73,999
2023	\$75,264	\$76,140
2024	\$89,067	\$78,281
2025	\$102,871	\$80,422
2026	\$116,674	\$82,563
2027	\$130,477	\$84,704
2028	\$144,281	\$86,845
2029	\$158,084	\$88,986

Applications

Label Printing - Syracuse

- 50,000 sq ft New Construction
- 1,100 lb/hr
- NYSERDA incentive approved for \$74,462

New York State Energy Research and Development Authority

- NYSERDA's mandate is to reduce the need for additional electrical generation through usage (KWH) and demand (KW) reduction
- Incentive monies are made available for pre-approved highefficiency equipment as well as process or equipment modifications that reduce energy use

Specialized Packaging, Baldwinsville, NY

- 1050 lb/hr FLEX nozzles
- 60,000 cfm outdoor make-up air fabric duct system to pressurize Gallus press zone
- \$90,000 NYSERDA Incentive
- Packaging manufacturer for consumer products

Around the world

 Strong name recognition in printing and packaging, industries

Condair experts – Application Support

• 70 years of experience

Contact:

- www.condair.com
- na.info@condair.com
- Nuno.Silva@Condair.com
- William.Truong@Condair.com
- Alvie.Stephenson@Condair.com

Thank you

Questions?